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We study the effects of hole doping on one-dimensional Mott insulators with orbital degrees of freedom. We
describe the system in terms of a generalized t-J model. At a specific point in parameter space the model
becomes integrable in analogy to the one-band supersymmetric t-J model. We use the Bethe ansatz to derive
a set of nonlinear integral equations which allow us to study the thermodynamics exactly. Moving away from
this special point in parameter space we use the density-matrix renormalization group applied to transfer
matrices to study the evolution of various phases of the undoped system with doping and temperature. Finally,
we study a one-dimensional version of a realistic model for cubic titanates which includes the anisotropy of the
orbital sector due to Hund’s coupling. We find a transition from a phase with antiferromagnetically correlated
spins to a phase where the spins are fully ferromagnetically polarized, a strong tendency toward phase sepa-
ration at large Hund’s coupling, as well as the possibility of instability toward triplet superconductivity.
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I. INTRODUCTION

In many transition-metal oxides, different orbital configu-
rations are close in energy or even degenerate. Small changes
in temperature or pressure can therefore lead to a complete
rearrangement of the electron clouds which in turn also
strongly influences the magnetic and the transport properties.
Such orbital degrees of freedom play an important role, for
example, in the manganites, titanates, vanadates, and
ruthenates.1,2 Quite common for these transition-metal ox-
ides is the perovskite crystal structure where each transition-
metal ion is surrounded by an octahedron of oxygen ions.
For a 3d transition-metal ion, the cubic crystal field then
splits the fivefold orbital degeneracy into threefold degener-
ate t2g orbitals and twofold degenerate eg orbitals. For ions in
a solid with eg orbital degeneracy one expects a quenching of
the orbital degrees of freedom due to the orbital-lattice Jahn-
Teller coupling because the eg orbitals are bond oriented. For
ions with t2g degeneracy, on the other hand, the Jahn-Teller
coupling is weak. In this paper, we will concentrate on
simple model Hamiltonians for t2g systems where any cou-
pling to the lattice is completely ignored. First, we want to
consider the case where we have one electron per site in the
t2g orbitals with the eg orbitals being inactive �fully occupied
or empty�. Because the on-site Coulomb interactions are
large the system is a Mott insulator in this case. The strongly
anisotropic shape of the t2g orbitals means that the direction
an electron can move to create a virtually excited state de-
pends on the orbital it is sitting in. More precisely, hopping is
only possible between orbitals of the same kind, and along a
particular crystal axis only two out of the three t2g orbitals
are active. This can lead to a �dynamical� lowering of the
effective dimensionality of the system in various ways. Con-
ventional orbital ordering can restrict the hopping to one-
dimensional chains which can then show typical one-
dimensional phenomena such as a Haldane gap3 or a Peierls
effect.4 More unconventional mechanisms such as an orbital-
driven Peierls effect5,6 or spin-orbital nematic states2 might

also render the system quasi-one-dimensional. In the latter
cases, however, there will still be a twofold orbital degen-
eracy. A simple Hamiltonian capturing the essential physics
is then given by

H = 2J�
j

�S jS j+1 + x��� j� j+1 + y� , �1�

where S is an S=1 /2 spin operator and � is a �=1 /2 orbital
pseudospin describing the occupation of the two degenerate
orbitals active along the chain direction. J=4t2 /U is the
magnetic superexchange constant, t is the hopping ampli-
tude, U is the onsite Coulomb repulsion, and x and y are real
numbers often treated as free parameters. From a micro-
scopic derivation of the effective model �1� it follows, how-
ever, that x and y are determined by Hund’s rule coupling JH
with x=y=1 /4 corresponding to JH=0. In addition, such a
derivation shows that finite Hund’s coupling does not only
modify x and y but also leads to an xxz-type anisotropy of
the orbital sector.2 This anisotropy is neglected in Eq. �1�. We
will come back to the relation between this simple model and
more realistic models in Sec. V.

The spin-orbital model �1� has been intensely studied7–14

and a number of different phases depending on x and y have
been identified �see, e.g., Refs. 11 and 15�. In general, the
model has a SU�2��SU�2� symmetry and exhibits an addi-
tional Z2 symmetry, interchanging spin, and orbital degrees
of freedom if x=y. At the special point x=y=1 /4 the sym-
metry is enlarged even further to SU�4�. This has to do with
the fact that at this point the Hamiltonian is just a permuta-
tion operator of states on neighboring sites. The model there-
fore becomes a version of the Uimin-Sutherland model16 and
is integrable by Bethe ansatz �BA�.

In this work we want to study the effects of hole doping
on the spin-orbital model �1�. Because states with more than
one electron per site are effectively forbidden due to the
strong Coulomb repulsion U, hole doping of the Mott insu-
lator �1� naturally leads us to a generalized t-J model,
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H = t�
j

�
�,�

P�cj,�,�
† cj+1,�,� + H.c.�P

+ 2J�
j
��S jS j+1 + x��� j� j+1 + ynjnj+1� −

njnj+1

4
� .

�2�

Here P projects out the doubly occupied states, � is the spin,
and � is the orbital index. Starting from a Hubbard model,
one finds to order t2 /U also the so-called three-site terms.
Their contribution to the total energy is proportional to J�1
−n�, where n is the electron density. For the more realistic
models for cubic titanates considered later on we will mainly
be interested in J / t�1 and n�1 where the effect of these
terms is small. We will therefore neglect them throughout. As
for the one-band t-J model it turns out that there is a special
point in parameter space J / t=2, x=y=1 /4 where the model
is integrable by Bethe ansatz. Again, the symmetry is en-
larged at this point to SU�4 	1� 
graded SU�5� symmetry�; the
Hamiltonian is a permutation operator of states on neighbor-
ing sites and falls into the Uimin-Sutherland class of models.

In Sec. II we will investigate the thermodynamics of this
model at the integrable point with the help of the Bethe
ansatz and the quantum transfer-matrix approach. Details of
the Bethe ansatz calculation are presented in the Appendix.
In Sec. III we briefly introduce the density-matrix renormal-
ization group applied to transfer matrices �TMRG� which we
will use to study the thermodynamics of model �2� numeri-
cally away from the integrable point. We will test the accu-
racy of this method by comparing with exact results at the
integrable point. In Sec. IV we will use the TMRG algorithm
to study the evolution of various phases of the undoped
model �1� with doping and temperature. In Sec. V we finally
consider a one-dimensional version of a realistic model for
cubic titanates which includes the xxz-type anisotropy of the
orbital sector due to Hund’s coupling. We investigate the
phase transitions, possible tendencies toward phase separa-
tion as well as superconducting instabilities as a function of
the strength of Hund’s coupling. In Sec. VI we present a
short summary and our conclusions.

II. INTEGRABLE MODEL

The integrable SU�4 	1� model �2� with J / t=2 and x=y
=1 /4 was studied by Schlottmann.17,18 He derived the Bethe
ansatz equations and studied the ground-state properties as
well as the elementary excitations. Kawakami19 later then
derived the critical exponents of various correlation func-
tions. Here we want to concentrate on the thermodynamics
of this model. Based on the quantum transfer-matrix ap-
proach we derive a set of nonlinear integral equations
�NLIEs� which then are evaluated numerically to obtain vari-
ous thermodynamic quantities. Details about the derivation
of the NLIE are given in the Appendix.

Our results for the thermodynamics in the low-
temperature limit can be connected to Schlottmann’s and
Kawakami’s results for the elementary excitations using con-
formal field theory �CFT�. The SU�4� spin-orbital model, i.e.,
model �2� with n=1, is known to belong to the universality

class of the SU�4�1 Wess-Zumino-Witten �WZW� models11,20

so that the central charge cso=3. Similar to the one-band
supersymmetric t-J model we expect that the critical theory
for the hole-doped model is a semidirect product of the spin
orbital and the charge part so that the free energy at low
temperatures is given by

f = e0 −
�

6
� cso

vso
+

cc

vc
T2. �3�

Here e0 is the ground-state energy which can be calculated
by Bethe ansatz,18 vso �vc� are the velocities of the elemen-
tary spin-orbital �charge� excitations, respectively, and cc=1
is the central charge of the charge sector.

In Fig. 1 we show the specific heat as a function of tem-
perature for various fillings. According to Eq. �3� the specific
heat at low temperatures is linear and determined by the
elementary charge and spin-orbital excitations,

C = − T
�2f

�T2 =
�

3
� cso

vso
+

cc

vc
T . �4�

As shown in the left inset of Fig. 1 the velocities of the
charge and spin-orbital excitations go to zero for n→0 so
that the slope of C diverges in this limit. For n→1, on the
other hand, only vc→0, whereas vso→J� /4. This also leads
to a diverging slope, however, the charge excitations are
quickly exhausted so that this behavior is only visible at very
low temperatures. At higher temperatures �but still T� t� the
slope then crosses over to the value given by the spin-orbital
excitations only. Finally, for n=1, we have C=2T in the
whole conformal regime. In the low-temperature limit, the
BA results which we obtained by the quantum transfer-
matrix approach indeed agree perfectly with the CFT result
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FIG. 1. �Color online� Specific heat for integrable model �2�
with J / t=2 and x=y=1 /4 calculated by BA. The left inset shows
the spin-orbital �vso� and the charge velocity �vc� as a function of
particle density n. The right inset compares the BA results �solid
lines� with the low-temperature asymptotics obtained from CFT
�dashed lines� 
see Eq. �4��.
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Eq. �4�� using the velocities determined according to Ref. 18
�see right inset of Fig. 1�.

The magnetic susceptibility �s as a function of tempera-
ture is shown in Fig. 2. From CFT we expect �s=1 /�vso at
zero temperature. Because vso vanishes for n→0, the mag-
netic susceptibility diverges in this limit. For n=1, on the
other hand, we have vso=J� /4 so that �s=2 /�2. Note, how-
ever, that logarithmic corrections are expected at low tem-
peratures similar to the Heisenberg chain. Therefore the sus-
ceptibility will approach the zero-temperature limit predicted
by CFT with infinite slope. This explains why even at the
lowest temperatures, as shown in Fig. 2, the susceptibility
curves obtained by BA still deviate significantly from the
zero-temperature limit. In Fig. 3 we show the compressibility
�c for various densities. For the compressibility CFT predicts
�c=Kc / ��vc�, where Kc is the Luttinger parameter of the
charge sector. Using the BA we can calculate the so-called
dressed charge,19,21,22 	c�Q�, which is related to the Luttinger
parameter by Kc=	c�Q�2. The dressed charge as a function of
density is shown in the inset of Fig. 3. Because the charge
velocity vanishes for n→0 and n→1 �see Fig. 1� we have a

diverging compressibility in both limits. In addition, we no-
tice that even at intermediate densities the compressibility is
large indicating that the integrable point is not that far from a
phase-separated state. In general, phase separation is pro-
moted by an increasing ratio of J / t as is well known in the
SU�2� t-J model.23,24 We will come back to this point in Sec.
IV.

Finally, we want to consider the transport properties of the
integrable model at zero temperature. We can write the real
part of the conductivity at zero momentum as ���
�
=2�D��
�+�reg�
�, where D is the Drude weight and
�reg�
� the regular part. With the help of conformal field
theory and Bethe ansatz we find

D =
Kcvc

2�
=

	c
2�Q�vc

2�
. �5�

Thus, the Drude weight follows directly from the dressed
charge shown in the inset Fig. 3 and the charge velocity
shown in the left inset of Fig. 1 and is depicted in Fig. 4. D
vanishes for n→0 where the number of charge carriers van-
ishes and for n→1 where the Mott gap opens up. Quite
surprisingly, the Drude weight for the supersymmetric point
appears to be symmetric around n=1 /2 although Hamil-
tonian �2� does not possess such a symmetry. To understand
this behavior it is instructive to study in addition the Drude
weight for J=0. In this case only the kinetic energy part of
Eq. �2� remains. Then the spin and orbital indices do not
matter, and due to the projection operators the model be-
comes equivalent to a one-band spinless fermion model.
Note that the Mott gap at n=1 is therefore still incorporated.
The Drude weight can now be calculated from

e��� − e�0� = D�2/N2 + O�N−3� , �6�

with e being the ground-state energy per site and � being a
field describing a twist in the boundary conditions, cj+N
=ei�cj. We find
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FIG. 2. �Color online� Magnetic susceptibility �s for the inte-
grable model. The dashed lines denote the zero-temperature limit
according to CFT.
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FIG. 3. �Color online� Compressibility �c for the integrable
model. The lines denote the zero-temperature limit according to
CFT. The inset shows the dressed charge as a function of density.
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point J=2t �black solid line� and for J=0 �red dashed line�, respec-
tively. In the insets the regions of small and large densities are
shown in detail.
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D�J = 0� =
t

�
sin �n , �7�

which is shown as dashed curve in Fig. 4. Now the Drude
weight is indeed symmetric around n=1 /2 because the spin-
less fermion model is particle-hole symmetric. The compari-
son with the supersymmetric case near n�0 in the left inset
of Fig. 4 shows that the Drude weights coincide in this limit.
This is expected because the exchange interaction J becomes
irrelevant in the dilute limit. For n�1 shown in the right
inset of Fig. 4, on the other hand, we see that the two curves
do not coincide. In this limit J cannot be neglected. This
means that D for the supersymmetric case is not symmetric
around n=1 /2 but the deviations from this symmetry are
very small. Similar observations have been made for the one-
band supersymmetric t-J model by Kawakami and Yang.25

III. DENSITY-MATRIX RENORMALIZATION
GROUP

The density-matrix renormalization group applied to
transfer matrices �TMRG� is based on a mapping of a one-
dimensional quantum system to a two-dimensional classical
one by means of a Trotter-Suzuki decomposition. In the clas-
sical model one direction is spatial, whereas the other corre-
sponds to the inverse temperature. For the classical system a
so-called quantum transfer matrix �QTM� is defined which
evolves along the spatial direction. At any nonzero tempera-
ture the QTM has the crucial property that its largest eigen-
value 0 is separated from the other eigenvalues by a finite
gap. The partition function of the system in the thermody-
namic limit is therefore determined by 0 only, allowing it to
perform this limit exactly. The Trotter-Suzuki decomposition
is discrete so that the transfer matrix has a finite number of
sites or local Boltzmann weights M. The temperature is
given by T���M�−1, where � is the discretization parameter
used in the Trotter-Suzuki decomposition. The algorithm
starts at some high-temperature value where M is so small
that the QTM can be diagonalized exactly. Using a standard
infinite-size density-matrix renormalization group �DMRG�
algorithm, sites are then added to the QTM leading to a
successive lowering of the temperature. The TMRG method
is described in detail in Refs. 26–28 and has been applied to
a number of one-dimensional systems such as frustrated and
dimerized spin chains,29 the Kondo lattice model,30 the t-J
chain28,31 and ladder,32 as well as to the extended Hubbard
model.33

To obtain insight into the physical properties of the doped
spin-orbital model, we will, in particular, be interested in the
behavior of two-point correlation functions. At finite tem-
peratures we expect that any two-point correlation function
of a local operator O�r� decays exponentially with distance r,

�O�1�O�r�� − �O�1���O�r�� = �
n

Mne−r/	neiknr. �8�

Here Mn is a matrix element, 	n is the correlation length, and
kn is the corresponding wave vector. Note, that in the
asymptotic expansion �8� infinitely many correlation lengths
appear. Within the TMRG algorithm, correlation lengths and

corresponding wave vectors are determined by next-leading
eigenvalues n of the QTM,

	n
−1 = ln�0

n
�, kn = arg�n

0
 . �9�

The long-distance behavior of the correlation function is then
dominated by the correlation length 	� belonging to the larg-
est eigenvalue � ���0� with M��0.

Apart from spin-spin �orbital-orbital� �S�1�S�r��

���1���r��� two-point correlation functions, we are also in-
terested in pair-correlation functions to investigate possible
superconducting instabilities. For model �2� we can define
the following singlet and triplet pair-correlation functions:

Gtt�r� = �c↑a�r + 1�c↑a�r�c↑a
† �2�c↑a

† �1�� ,

Gss�r� = �c↑a�r + 1�c↓b�r�c↑a
† �2�c↓b

† �1�� ,

Gts�r� = �c↑a�r + 1�c↑b�r�c↑a
† �2�c↑b

† �1�� ,

Gst�r� = �c↑a�r + 1�c↓a�r�c↑a
† �2�c↓a

† �1�� . �10�

Here a and b denote the �z component and ↑ and ↓ denote the
Sz component. For each of these pair correlations an
asymptotic expansion 
Eq. �8�� exists and relation �9� can be
used to numerically determine the corresponding leading
correlation lengths.

The discrete Trotter parameter � leads to a systematic er-
ror in the free energy of order �2. In the calculations pre-
sented here we have chosen �=0.05 so that this error is ex-
pected to be of the order of 10−3–10−4. More important is the
error due to the truncation of the Hilbert space in each
DMRG step. This error is difficult to estimate but accumu-
lates with each DMRG step, finally leading to a breakdown
of the numerics at low temperatures. In the calculation pre-
sented here we will keep N=240–360 states as basis for the
truncated Hilbert space. To decide down to which tempera-
tures the TMRG is reliable, we show results for the free
energy and density at the integrable point in Fig. 5. It is
important to note that we perform the numerical calculations
in a grand canonical ensemble, i.e., we fix the chemical po-
tential and not the particle density. In particular for small
doping levels it is, however, possible to find a chemical po-
tential so that the density depends only very weakly on tem-
perature as shown in Fig. 5�c�. Note that for T→� we al-
ways have n→4 /5 because we have five states locally with
one state corresponding to the empty site. The absolute errors
in the free energies and in the densities stay smaller than
10−2 for temperatures down to T / t�0.1 as shown in Figs.
5�b� and 5�d�, respectively. This accuracy is completely suf-
ficient to study the thermodynamic properties of model �2�,
and temperatures of the order of T / t�0.1 are low enough to
identify the ground state as well.

IV. xy MODEL

In this section we want to investigate model �2� away
from the integrable point. First, we want to demonstrate that
the integrable point is indeed already close to a state with
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phase separation. While keeping x=y=1 /4 we now set J / t
=3 and show in Fig. 6 the density as a function of chemical
potential for various temperatures. For T / t→0 the density is
zero for ��−2.73 and equal to one otherwise. This means
that the compressibility calculated at any fixed density is
divergent and the ground state therefore phase separated. The
reason for phase separation is obvious: for large J / t the sys-
tem tries to maximize its magnetic exchange energy which is
achieved by separating the particles from the holes.

For all transition-metal oxides we expect in general
J=4t2 /U� t which is equivalent to 4t�U. Exact values for
J / t depend on the considered compound but values of J / t

�0.3–0.5 are typical. As a representative value we will con-
centrate in the following on J / t=0.5.

A. Dimerized phase

For x=y=1 /2 the undoped model is in a dimerized phase
and spin and orbital excitations are gapped.11,14 Spin-Peierls-
type instabilities are a generic feature of systems with
coupled spin and orbital degrees of freedom and have been
investigated in more detail in Refs. 6 and 34. Here we want
to study how dimer order and excitation gap evolve with
doping. In Fig. 7 the magnetic susceptibility for various dop-
ing levels is shown. Note that due to the Z2 symmetry spin
and orbital sectors are equivalent and spin and orbital sus-
ceptibility are therefore identical. In the undoped case a spin
gap � is clearly visible. In Ref. 14 this gap has been found to
be of the order of �=0.090�0.005. With increasing hole
concentration the spin gap becomes smaller but is still de-
tectable numerically at a chemical potential �=1.0 which
corresponds to a density of n=0.85 at low temperatures. For
larger doping levels the spin excitations seem to become
gapless so that the system apparently turns into a Luttinger
liquid. The long-range dimer order, on the other hand, seems
to break down immediately when holes are added to the
system. In the case of algebraically decaying correlations at
zero temperature, we expect the corresponding correlation
length to diverge as 	�1 /T, whereas 	 will diverge stronger
than 1 /T in the case of true long-range order. In inset �b� of
Fig. 7 we therefore show the leading spin �orbital� dimer
correlation length 	D multiplied by T. In the undoped case
the divergence of T	D indicates that the ground state has
indeed long-range dimer order, whereas for a chemical po-
tential �=1.1, corresponding to n�0.9 at low temperatures,
T	D is decreasing with temperature. Here we expect 	D to
stay finite so that T	D→0 for T→0 in accord with the nu-
merical data.

B. Ferromagnetic/Antiferromagnetic phase

Here we want to consider J / t=0.5 with x=0.5 and y=
−0.5 where the undoped model shows ferromagnetism in the
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FIG. 5. �Color online� �a� Free energy f calculated by TMRG
�symbols� with N=360 states kept compared to the exact solution
�lines�. The black circles �black solid lines� denote the result for
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spin sector and algebraically decaying antiferromagnetic cor-
relations in the orbital sector.11 As shown in inset �a� of Fig.
8 we find that the density for a chemical potential �=−0.1 is
almost constant, n�0.84, for temperatures T� 
0,2�. This
allows us to compare the undoped model directly with this
slightly doped case. In the main figure the spin susceptibility
�s as a function of temperature is shown. As expected, �s
becomes suppressed with doping but still diverges for
T→0 indicating long-range ferromagnetic order in both
cases. In inset �b� of Fig. 8 the nearest-neighbor spin-spin
and orbital-orbital expectation values are shown. In the un-
doped case �SiSi+1�→1 /4 for T→0 as expected for ferro-
magnetic order. When the spins order ferromagnetically,
then, according to Hamiltonian �1�, we have an effective an-
tiferromagnetic coupling for the orbitals so that ��i�i+1�→
−ln 2+1 /4 for T→0. This is the value for an antiferromag-
netic Heisenberg chain known from Bethe ansatz. In the
slightly doped case both the ferromagnetic spin and the an-
tiferromagnetic orbital correlations become weaker. The
charge compressibility shown in inset �c� of Fig. 8 is nonzero
for T→0 indicating that the charge excitations are gapless.

This leads us to the question if the system has algebra-
ically decaying pair correlations and if so, which one of the
pair correlations defined in Eq. �10� dominates. In Fig. 9 we
show some of the leading correlation lengths. Dominant is
the spin-spin correlation length with wave vector k=0 which
diverges as 1 /T indicative of the ferromagnetic order in the
ground state.35 Next, we find a correlation length which be-
longs to the asymptotic expansion of the orbital-orbital cor-
relation function. Interestingly, the associated wave vector is
given by k=� for T / t�0.28 but becomes incommensurate at
lower temperatures. At T / t�0.28 the correlation length
shows a cusp. The explanation for this cusp is as follows. In
asymptotic expansion �8� of the orbital-orbital correlation
function we have two correlation lengths with wave vector

k=�. At T / t�0.28 these two correlation lengths cross and
the oscillations of the now leading correlation length become
incommensurate. For T→0 we find that k→ �2kF= ��n
� �2.64 for n�0.84. So at T=0 the incommensurate oscil-
lations just reflect the incommensurate filling of the system.
Similar crossover phenomena in the leading correlation
length at finite temperature have also been observed in the
xxz model in a magnetic field36 and in the one-band t-J
model at incommensurate filling.28,31

For the pair correlations defined in Eq. �10� we find that
the spin triplet/orbital singlet correlation Gts has the largest
correlation length 	ts. At low temperatures we find 	ts�1 /T
indicating that Gts will decay algebraically at zero tempera-
ture. The associated wave vector is given by kts=0 for T / t
�0.5 but becomes incommensurate at lower temperatures.
The numerical data seem to indicate that for T→0 the oscil-
lations become commensurate again with kts=�. In the
ground state this would mean that Gts�r���−1�r /rx with
some critical exponent x.

In the ferromagnetic/antiferromagnetic phase considered
in this section a coupling between spin-orbital chains might
therefore induce true long-range triplet superconductivity.
Here triplet superconductivity arises from the coupling of the
spins with the orbital pseudospins. The degenerate orbitals
order antiferromagnetically, leading to an effective ferromag-
netic coupling for the spins.

V. ONE-DIMENSIONAL VERSION OF A REALISTIC
MODEL FOR CUBIC TITANATES

In recent years a lot of interest has focused on the Mott
insulator LaTiO3.2,37 Here the octahedron of oxygen ions sur-
rounding each Ti3+ is nearly perfect. This opens up the pos-
sibility that the orbital degeneracy is not lifted by lattice
distortions and that the orbitals act as additional quantum
degrees of freedom. Starting from the ideal case of com-
pletely degenerate t2g orbitals, one can derive a superex-
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change model similar to Eq. �1�. Here the two orbitals rep-
resented by the orbital pseudospin � depend on the bond
direction. Along the c axis, for example, only the t2g levels of
xz and yz symmetries are active and represented by �,
whereas � stands for the xy and xz orbitals if the bond is
along the a axis. Having different orbital pairs active along
each spatial direction necessarily frustrates the one-
dimensional physics discussed in Secs. I–IV of this paper
and might lead to a liquid state with short-range SU�4�-type
correlations.37 Nevertheless, a directional nematic state
where the system makes full use of the orbital quantum fluc-
tuations say along the c axis with active xz and yz orbitals
while the xy orbital is empty, thus preventing orbital fluctua-
tions in the other two directions, might be close in energy
and could possibly be realized in LaTiO3 under pressure.2 An
example, where such orbital selection leading to a strongly
directional spin-orbital state probably happens is YVO3. In
this system, however, we have an effective spin S=1.5,6

It is important to take Hund’s rule splitting of the virtual
excited states into account when deriving the superexchange
Hamiltonian for LaTiO3. This leads, in particular, to an
xxz-type anisotropy of the orbital sector, i.e., contrary to Eq.
�1� the Hamiltonian no longer has a SU�2��SU�2� symme-
try. If we consider the hole-doped case and add the hopping
of the holes to the superexchange Hamiltonian for LaTiO3
given in Ref. 2, we obtain again a t-J-type Hamiltonian
which can be represented as

H = t�
j

�
�,�

P�cj,�,�
† cj+1,�,� + H.c.�P

+ 2Jeff��S jS j+1 + x��� j� j+1 + �� j
z� j+1

z + ynjnj+1�

−
z

4
njnj+1 + �� j

z� j+1
z � , �11�

with parameters

Jeff =
J

2
�r1 + r2�, x =

1

4
+

1

2

r1 − r2

r1 + r2
,

y =
1

4
−

1

2

r1 − r2

r1 + r2
+

1

6

r3 − r2

r1 + r2
, � =

2

3

r3 − r2

r1 + r2
,

z =
2

3

r1�5r2 + r3�
�r1 + r2�2 , � =

2

3

r1�r2 − r3�
�r1 + r2�2 . �12�

If we ignore the splitting of the virtually excited states due to
Hund’s coupling, we have r1=r2=r3=1 so that Hamiltonian
�12� is equivalent to Hamiltonian �2� with x=y=1 /4 and
Jeff=J. For finite Hund’s coupling JH we have

r1 =
1

1 − 3�
, r2 =

1

1 − �
, r3 =

1

1 + 2�
, �13�

where �=JH /U.
From optical data and first-principles calculations for

LaTiO3, one finds the approximate values for the hopping
amplitude t�0.3 eV, the onsite Coulomb repulsion U
�2.8 eV, and the Hund rule coupling JH�0.6 eV.2 For

model �11� this means that J=4t2 /U�0.13 eV, J / t=4t /U
�0.43, and �=JH /U�0.21. It is therefore reasonable to set
again J / t=0.5 as in Sec. IV. Parameters 
Eq. �12�� as a func-
tion of � for this value of J / t are shown in Fig. 10. Although
� and � become nonzero for finite � thus destroying the
SU�2� symmetry of the orbital sector, their values remain
small in the physical regime for � depicted in Fig. 10. It is
therefore indeed reasonable to neglect this anisotropy in first
approximation as has been done in Sec. IV. Furthermore, we
also find that z�1 at least up to ��0.2 so that the variation
in z can also be neglected. We are then back to Hamiltonian
�2� with J replaced by an effective superexchange scale Jeff
and with x and y being functions of the single parameter �
only. From this observation we can infer the basic properties
of this model. For ��0.2 the model will be in a “rescaled
SU�4� phase,” i.e., a phase where the same field theory as at
the SU�4� symmetric point describes the low-energy proper-
ties but with spin and orbital velocities which are rescaled
and no longer equivalent. Strictly speaking this is only cor-
rect without orbital anisotropy ��=�=0�. Depending on the
spin order, the orbital anisotropy might become Ising-like so
that the orbital excitations become gapped. However, even if
this happens the orbital gap caused by this mechanism will
be extremely small. For ��0.2 we expect to enter a phase
with ferromagnetically ordered spins and antiferromagnetic
correlations in the orbital sector. At the same time Jeff in-
creases with increasing � so that we expect a phase-
separated state if ��0.3 in the doped case.

In the following, we present numerical results for the full
model 
Eq. �11�� with J / t=0.5 and the parameters as given in
Eqs. �12� and �13�. In Fig. 11 the density as a function of
chemical potential is shown for �=0.3 and �=0.25. As in
Fig. 6 we see that the density for �=0.3 and T / t→0 jumps
from zero to one. Here the jump occurs at a chemical poten-
tial of ��−3.5. Again this indicates a diverging compress-
ibility in a canonical ensemble for all densities and confirms
the expected phase separation at large �. For �=0.25 �shown
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y as functions of �. �c� Parameters � and � related to the xxz
anisotropy of the orbital sector as a function of �. The dashed blue
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transitions described in the text.
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the in the inset of Fig. 11�, on the other hand, the ground
state is not phase separated.

Next, we consider the slightly doped case, n�0.8–0.85,
for different parameters �. The nearest-neighbor correlation
functions �S jS j+1� and �� j� j+1� presented in Fig. 12 show
clearly that the spin correlations are antiferromagnetic for
�=0.1 and ferromagnetic for �=0.2 and �=0.25. The orbital
correlations, on the other hand, are antiferromagnetic in all
three cases. To fix the critical value for � where the phase
transition occurs, we consider in Fig. 13 the nearest-neighbor
spin correlation for the undoped model �n=1� as a function
of temperature T and Hund’s coupling �. The data show that
the spins in the ground state are fully polarized if ���c
�0.2. For ���c the spin correlations are antiferromagnetic
in the ground state. In this case, however, �S jS j+1� can be
nonmonotonic as a function of temperature and even larger

than zero in a certain temperature range if � is close to �c.
The expectation value for �S jS j+1� jumps at zero temperature
from some �-dependent value for ���c to 1/4 for ���c.
The phase transition driven by � is therefore first order. Very
interestingly, the phase transition occurs at a value for �
which is close to the one expected for LaTiO3. In addition to
the frustration of the orbital sector in this compound due to
different orbital pairs being active along each direction, this
closeness to the phase transition might also be important to
understand the peculiar physics of LaTiO3. It might, in par-
ticular, be a contributing factor to the smallness of the or-
dered moment in the G-type antiferromagnetic structure.38

Note, however, that also other factors such as the Ti-O-Ti
bond angle are very important in determining whether the
spins order ferromagnetically or antiferromagnetically. The
different magnetic properties of YTiO3 �ferromagnetic spin
order� and LaTiO3 �G-type antiferromagnetic order�, for ex-
ample, have been ascribed to a small variation in this angle.39

Nevertheless, this variation in bond angle can be mimicked
to a certain degree by increasing � so that the phase transi-
tion situated at �c�0.2 in the one-dimensional model is in-
deed important to understand the physics of the cubic titan-
ates.

Finally, we want again to study possible pairing instabili-
ties in the slightly doped case. Here we concentrate on �
=0.25 with J=0.5 and �=−0.8 as in Fig. 12. Results for the
leading correlation lengths in this case are presented in Fig.
14. We find that the spin-spin, orbital-orbital, density-density,
as well as the spin triplet/orbital singlet correlation lengths
all diverge as 1 /T for T→0 indicating that these correlations
will decay algebraically at zero temperature. As in Sec. IV B
we find that the oscillations of the orbital-orbital and the
density-density correlations become incommensurate in the
low-temperature regime. Again k→ �2kF= ��n� �2.64
for n�0.84 reflecting the incommensurate filling of the sys-
tem. The spin triplet/orbital singlet correlation length is
larger than any of the other correlation lengths associated
with the pair correlations defined in Eq. �10�. If supercon-
ductivity can be stabilized at all in a possible nematic phase
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of LaTiO3 or YTiO3, there is therefore the possibility that it
will be of triplet character.

VI. SUMMARY AND CONCLUSIONS

In this paper we studied the thermodynamic properties of
hole-doped one-dimensional Mott insulators with orbital de-
grees of freedom. We described such systems in terms of
generalized �multiband� t-J models. Neglecting the Hund
rule splitting of the virtually excited states, we were led to a
model which is integrable for one specific value of the ratio
J / t. At this point the model becomes SU�4 	1� symmetric

graded SU�5� symmetry� and belongs to the so-called
Uimin-Sutherland class of models.16 The integrability at this
particular point is analogous to the integrability of the usual
t-J model at the supersymmetric point. Ground-state proper-
ties of the SU�4 	1� symmetric spin-orbital model were first
investigated using Bethe ansatz by Schlottmann and
Kawakami.17–19 Here we presented a set of nonlinear integral
equations also based on the Bethe ansatz which allowed us to
study the thermodynamics. Using conformal field theory we
have been able to connect our results for the thermodynamics
at low temperatures with the results for the ground state and
the elementary excitations obtained by Schlottmann and
Kawakami.17–19

In the second part of the paper we used the density-matrix
renormalization group applied to transfer matrices �TMRG�
to study the thermodynamics of the two-band t-J model
away from the integrable point. By comparing with Bethe
ansatz results at the integrable point, we demonstrated that
the obtained numerical results are accurate down to low tem-
peratures T / t�0.05. For large values of J / t we then showed
that the ground state becomes phase separated. Next, we
studied the effects of hole doping on various phases of the
undoped model. If the ground state of the undoped model is

dimerized then the associated spin gap persists up to rela-
tively large hole concentrations. The long-range nature of the
dimer order, however, seems to break down immediately
upon hole doping. Starting from the phase of the undoped
model where the spins are fully ferromagnetically polarized
and the orbitals show antiferromagnetic correlations, we
found that upon hole doping the spin triplet/orbital singlet
pair correlation dominates among the various possible pair-
correlation functions. This correlation function will decay
algebraically at zero temperature so that interchain couplings
might stabilize true triplet superconductivity in this phase.

In the last part we used the TMRG algorithm to study the
effects of hole doping for a one-dimensional version of a
realistic model for cubic titanates. The model can be written
in a form making it very similar to the one considered earlier.
Previously independent parameters, however, now become
functions of the ratio � of Hund’s coupling JH and the onsite
Coulomb repulsion U, and there is an additional xxz-type
anisotropy of the orbital sector. The effective superexchange
coupling is as well a function of � and increases monotoni-
cally with increasing �. For ��0.3 this leads to a phase-
separated ground state. In addition, we find a phase transition
at �c�0.2 between a state with antiferromagnetically corre-
lated spins ����c� and a state with fully ferromagnetically
polarized spins ����c�. The phase transition is first order.
For ���c the dominating pair correlation is again of spin
triplet/orbital singlet character and might lead to a true su-
perconducting instability if interchain couplings are present.
Interestingly, realistic � values for LaTiO3 are close to �c.
Although a purely one-dimensional model is not appropriate
for this compound, the nature of local correlations might be
correctly captured and � being close to �c might contribute
to the peculiar properties of this compound, in particular, to
the extremely small G-type magnetic moment.
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APPENDIX: NONLINEAR INTEGRAL EQUATIONS

The integrable SU�4 	1� model admits the calculation of
exact results for the thermodynamics. Here the largest eigen-
value of the QTM can be obtained by Bethe ansatz.40 The
number of Bethe ansatz equations, however, diverges in the
limit M→�. It is thus necessary to encode the Bethe ansatz
equations into an alternative form for which the limit can be
taken analytically. This can be done by defining suitable aux-
iliary functions in the spirit of Refs. 41 and 42, which are
shown to be determined by a closed set of only finitely many
coupled nonlinear integral equations �NLIEs�.

The rigorous derivation depends on the explicit knowl-
edge of the auxiliary functions in terms of the Bethe ansatz
roots for finite M. Unfortunately these are unknown for the
SU�4 	1� model. Yet we are able to conjecture the complete
set of coupled NLIEs by generalizing the structure that has
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been found for two closely related models in the Uimin-
Sutherland class, namely, the SU�2 	1� and the SU�4�
models.43,44 For the SU�4 	1� model we thus expect a total
number of 15 coupled NLIEs, exactly one more than for the
SU�4� model. Their structure should be given by

ln bj
�a��x� = −

tV�a��x� + cj
�a�

T

− �
b=1

4

�
k=1

�4

b

�

−�

�

Kj,k
�a,b��x − y�ln Bk

�b��y�
dy

2�
,

�A1�

where Bj
�a��x�=bj

�a��x�+1 are the unknown auxiliary func-
tions. The free energy is obtained from these functions via

f = − T�
a=1

4

�
j=1

�4

a

�

−�

�

V�a��y�ln Bj
�a��y�

dy

2�
. �A2�

Since the NLIEs must both reproduce the known results for
the SU�4� model in the limit n→1 ��→�� and yield the
correct zero-temperature limit, it is possible to fix the driving
terms and kernel functions. We find

V�a��x� =
4a

4x2 + a2 �A3�

and the constants

c1
�1� = c2

�1� = − 2t − � − h/2,

c3
�1� = c4

�1� = − 2t − � + h/2,

c1
�2� = − 4t − 2� − h ,

c2
�2� = c3

�2� = c4
�2� = c5

�2� = − 4t − 2� ,

c6
�2� = − 4t − 2� + h ,

c1
�3� = c2

�3� = − 6t − 3� − h/2,

c3
�3� = c4

�3� = − 6t − 3� + h/2,

c1
�4� = − 8t − 4� . �A4�

The kernel functions Kj,k
�a,b��x� for a and b=1,2 ,3 are similar

to those of the SU�4� model 
see Eqs. �33�–�35� of Ref. 44�
but where the common functions K̂
4�

�a,b��k� are replaced by

K̂�a,b��k� = e�1−b�	k	/2sinh�ak/2�
sinh�k/2�

− �a,b. �A5�

The remaining kernel functions are

K1,j
�4,a��x� = Kj,1

�a,4��x� = �
−�

�

K̂�a,4��k�eikxdk . �A6�

The set of NLIEs can easily be solved numerically by
iteration yielding high accuracy over the whole parameter
range. The validity of the results has been checked by com-
paring our specific heat data to the high-temperature expan-
sion rigorously derived in Ref. 45 on the basis of an alterna-
tive set of NLIEs. Moreover, the results agree in the low-
temperature limit with CFT and over the whole temperature
range with numerical TMRG calculations as shown in this
paper.

*j.sirker@fkf.mpg.de
†damerau@physik.uni-wuppertal.de
‡kluemper@physik.uni-wuppertal.de

1 Y. Tokura and N. Nagaosa, Science 288, 462 �2000�.
2 G. Khaliullin, Prog. Theor. Phys. Suppl. 160, 155 �2005�.
3 S. Lee et al., Nature Mater. 5, 471 �2006�.
4 D. I. Khomskii and T. Mizokawa, Phys. Rev. Lett. 94, 156402

�2005�.
5 C. Ulrich, G. Khaliullin, J. Sirker, M. Reehuis, M. Ohl, S. Mi-

yasaka, Y. Tokura, and B. Keimer, Phys. Rev. Lett. 91, 257202
�2003�.

6 J. Sirker and G. Khaliullin, Phys. Rev. B 67, 100408�R� �2003�.
7 Y. Q. Li, M. Ma, D. N. Shi, and F. C. Zhang, Phys. Rev. Lett. 81,

3527 �1998�.
8 Y. Yamashita, N. Shibata, and K. Ueda, Phys. Rev. B 58, 9114

�1998�.
9 S. K. Pati and R. R. P. Singh, Phys. Rev. B 61, 5868 �2000�.

10 B. Frischmuth, F. Mila, and M. Troyer, Phys. Rev. Lett. 82, 835
�1999�.

11 C. Itoi, S. Qin, and I. Affleck, Phys. Rev. B 61, 6747 �2000�.
12 P. Azaria, E. Boulat, and P. Lecheminant, Phys. Rev. B 61,

12112 �2000�.

13 S. K. Pati, R. R. P. Singh, and D. I. Khomskii, Phys. Rev. Lett.
81, 5406 �1998�.

14 J. Sirker, Phys. Rev. B 69, 104428 �2004�.
15 Y. Chen, Z. D. Wang, Y. Q. Li, and F. C. Zhang, Phys. Rev. B

75, 195113 �2007�.
16 B. Sutherland, Phys. Rev. B 12, 3795 �1975�.
17 P. Schlottmann, Phys. Rev. Lett. 69, 2396 �1992�.
18 P. Schlottmann, J. Phys.: Condens. Matter 5, 313 �1993�.
19 N. Kawakami, Phys. Rev. B 47, 2928�R� �1993�.
20 I. Affleck, Nucl. Phys. B 265, 409 �1986�.
21 H. Frahm and A. Schadschneider, J. Phys. A 26, 1463 �1993�.
22 A. G. Izergin, V. E. Korepin, and N. Y. Reshetikhin, J. Phys. A

22, 2615 �1989�.
23 M. Ogata, M. U. Luchini, S. Sorella, and F. F. Assaad, Phys. Rev.

Lett. 66, 2388 �1991�.
24 C. S. Hellberg and E. J. Mele, Phys. Rev. Lett. 67, 2080 �1991�.
25 N. Kawakami and S.-K. Yang, Phys. Rev. B 44, 7844 �1991�.
26 Density-Matrix Renormalization, Lecture Notes in Physics Vol.

528, edited by I. Peschel, X. Wang, M. Kaulke, and K. Hallberg
�Springer, Berlin, 1999�, and references therein.

27 S. Glocke, A. Klümper, and J. Sirker, in Computational Many-
Particle Physics, Lecture Notes in Physics Vol. 739 �Springer,

SIRKER, DAMERAU, AND KLÜMPER PHYSICAL REVIEW B 78, 235125 �2008�

235125-10



Berlin, 2008�.
28 J. Sirker and A. Klümper, Europhys. Lett. 60, 262 �2002�.
29 A. Klümper, R. Raupach, and F. Schönfeld, Phys. Rev. B 59,

3612 �1999�.
30 T. Mutou, N. Shibata, and K. Ueda, Phys. Rev. Lett. 81, 4939

�1998�.
31 J. Sirker and A. Klümper, Phys. Rev. B 66, 245102 �2002�.
32 B. Ammon, M. Troyer, T. M. Rice, and N. Shibata, Phys. Rev.

Lett. 82, 3855 �1999�.
33 S. Glocke, A. Klümper, and J. Sirker, Phys. Rev. B 76, 155121

�2007�.
34 J. Sirker, A. Herzog, A. M. Oleś, and P. Horsch, Phys. Rev. Lett.

101, 157204 �2008�.
35 M. Takahashi, Prog. Theor. Phys. Suppl. 87, 233 �1986�.
36 A. Klümper, J. R. R. Martinez, C. Scheeren, and M. Shiroishi, J.

Stat. Phys. 102, 937 �2001�.
37 G. Khaliullin and S. Maekawa, Phys. Rev. Lett. 85, 3950 �2000�.
38 B. Keimer, D. Casa, A. Ivanov, J. W. Lynn, M. v. Zimmermann,

J. P. Hill, D. Gibbs, Y. Taguchi, and Y. Tokura, Phys. Rev. Lett.
85, 3946 �2000�.

39 G. Khaliullin and S. Okamoto, Phys. Rev. B 68, 205109 �2003�.
40 A. Klümper, T. Wehner, and J. Zittartz, J. Phys. A 30, 1897

�1997�.
41 A. Klümper, Ann. Phys. 1, 540 �1992�.
42 A. Klümper, Z. Phys. B: Condens. Matter 91, 507 �1993�.
43 G. Jüttner, A. Klümper, and J. Suzuki, Nucl. Phys. B 487, 650

�1997�.
44 J. Damerau and A. Klümper, J. Stat. Mech.: Theory Exp. 2006,

P12014.
45 Z. Tsuboi, Nucl. Phys. B 737, 261 �2006�.

HOLE DOPING OF A MOTT INSULATOR WITH ORBITAL… PHYSICAL REVIEW B 78, 235125 �2008�

235125-11


